PAT-ADD DA 947 is a polymeric dispersing agent, dissolved in butyl acetate, for use in industrial solvent-borne paints and pigment concentrates.

PAT-ADD DA 947 is specially designed for application in coil coatings and industrial paints systems as well as in high concentrated pigment dispersions.

PAT-ADD DA 947 is effective as dispersant for carbon blacks, organic and inorganic pigments.

PHYSICAL CHARACTERISTICS:

- **Appearance**: Clear to slightly hazy yellowish liquid
- **Viscosity @ 25°C, approx**: 500 cPs
- **Specific gravity @ 25°C, approx**: 1.005
- **Amine value**: approx. 18 mg of KOH/gm
- **Composition**: polymeric polyurethane with cationic pigment affinic groups
- **Solvents**: Butyl acetate
- **Solids content, approx.**: 58-62%

"Physical parameters indicated here in product data sheet are typical properties and not specification limits or range."

PROPERTIES:

PAT-ADD DA 947 is a polymeric dispersing agent showing strong adsorption properties onto a wide variety of pigment surfaces, contributing to best dispersion stability, low viscosity pigment dispersions and high transparency for fine particle sized pigments.

Main benefits are:

- Free of aromatic solvents
- Most suitable dispersant for high pigment loaded tinters
- Extremely effective for furnace carbon blacks, for extreme jet, blue undertone
- Provides excellent colour development and transparency
- Designed for coil coatings and general industrial coatings

For information on handling, storage and safety please refer to the information from the Material Safety Data Sheet
DOSAGE AND ADDITION:

The optimal amount of PAT-ADD DA 947 to be used is system related, but generally is between 10 and 15% PAT-ADD DA 947, calculated on the total weight of pigment concentrate. If used in mass tones, dosages of approx. 0.5 to 2.0% are suggested. The product is best added to the mill-base prior to the pigments.

For carbon blacks a dosage of 20 to 60% (active ingredient) on pigment is recommended.

The optimum concentration to be used depends on the individual requirements and conditions and is best determined experimentally.